

APPENDIX 5-12

LANDFALL SITE INVESTIGATIONS

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

Phone: (091) 841 274 Fax: (091) 847 687

email: <u>info@irishdrilling.ie</u>

SCEIRDE ROCKS LANDFALL

FACTUAL REPORT

Corio Generation, 50 Cowcross Street, London, EC1M 3HE, UK. GDG, Nutgrove Office Park, Rathfarnham, Dublin 14. D14 X627

	Prepared by	Approved by	Rev. Issue Date:	Revision No.
	Ronan Killeen	Declan Joyce	22 nd February 2023	22 CE/106_001
Signature				

Directors: DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., RONAN KILLEEN, B.E., C.Eng., M.I.E.I., (Secretary)

General Manager: Brendan Kennedy Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

FOREWORD

The borehole and trial pit records have been compiled from an examination of the samples by a Geotechnical Engineer and from the Drillers' descriptions.

The report presents an opinion on the configuration of the strata within the site based on the borehole and trial pit results. The assumptions, though reasonable, are given for guidance only and no liability can be accepted for changes in conditions not revealed by the boreholes and trial pits.

The fieldwork was carried out in accordance with IS EN 1997-2 and BS5930, 2015 Code of Practice for Site Investigations with precedence given to IS EN 1997-2 where applicable.

Contents:

1.0 Introduction

2.0 The Site & Geology

3.0 Fieldwork

4.0 Laboratory Testing

Book 1 of 1

Appendix 1 Trial Pit Records

Appendix 2 Borehole Records (Rotary Core)

Appendix 3 Thermal Conductivity/Resistivity

Appendix 4 Groundwater Readings

Appendix 5 Laboratory Test Results

Appendix 6 Photographs (Trial Pits)

Appendix 7 Photographs (Rotary Core)

Appendix 8 Site Plan

Appendix 9 Data Logger

1.0 Introduction.

Irish Drilling Ltd. (IDL) was instructed by Corio Generation Ltd to carry out a site investigation at the site of the proposed Sceirde Rocks Landfall Project.

This site investigation was carried out to provide detailed factual geotechnical information of the underlying ground conditions for a proposed Horizontal Directional Drilling (HDD) Design at the proposed landfall site.

The fieldwork commenced on November 21st 2022 and was completed on November 28th 2022.

2.0 Site & Geology

The site is located approximately near Doonbeg, County Clare.

The fieldwork was carried out predominantly on agricultural lands.

Geological Survey maps of the area indicate that the site is underlain by Siltstone and Sandstone Rock Formations known as 'Gull Island' Formation.

A Site Plan, prepared by the client's consulting engineers and showing approximate fieldwork locations, is included as Appendix 8 of this factual report.

3.0 Fieldwork.

The following plant was mobilised to site to carry out fieldwork operations:

1nr. CAT 130x Tracked Excavator.

1nr. GT1100 GoTract Rotary Core Drill Rig.

Fieldwork carried out to date has included the following:

Two trial pits were excavated on site using a tracked excavator.

The pits were logged and photographed by an Engineer with observations made on ground conditions, pit stability and water ingress.

Small and bulk disturbed soil samples were recovered at each change in strata and the samples were returned to the laboratory and presented for testing.

In situ testing consisting of Thermal Conductivity and Resistivity were carried out in the pits and the records of same are included as Appendix 3.

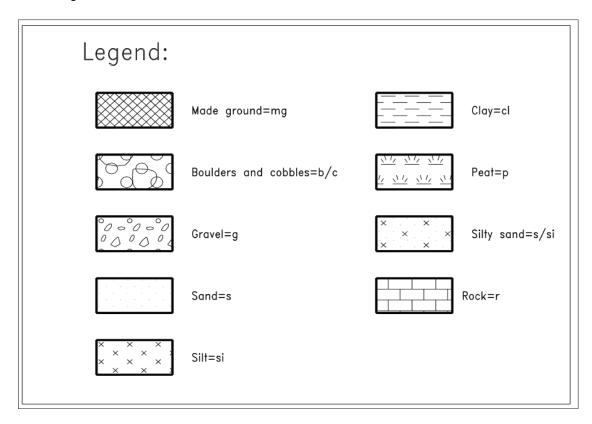
The pits were excavated to depths ranging from 0.90m to 1.70m below ground level and detailed engineering logs for the trial pits completed are included with this report in Appendix 1.

Two rotary core boreholes were carried out to establish overburden conditions and rockhead and to establish the nature and integrity of the underlying rock.

The rotary core boreholes were completed using wireline drilling techniques, with HQ size (64mm core diameter, 96mm hole diameter) drill strings to recover soil and rock core samples.

A water based flush system was used as the drilling medium while a biodegradable polymer gel was also used where necessary to aid the drilling and soil / rock recovery process.

The samples were stored in wooden boxes and returned to the laboratory where there were logged and photographed by a Geotechnical Engineer and presented for testing.


The rotary core boreholes were carried out to depths ranging from 23.70m to 31.00m below ground level.

A 50mm diameter standpipe was installed in rotary core borehole BH 01 to allow for the monitoring of groundwater levels over a prolonged period of time.

A data logger was subsequently installed at BH 01 to allow for continuous recording of groundwater readings over a prolonged period of time. The data logger was installed on December 1st 2022 and was removed on February 3rd 2022 and the records of the readings over this period of time are included as appendix 9.

Detailed engineering logs for the rotary core boreholes completed are included with this report in Appendix 2.

The following Key Legend Table details the symbology used on the engineering logs to describe ground conditions encountered:

Ground conditions encountered during the completion of the fieldwork were typical and as expected for this region and predominantly consisted of Glacial Tills overlying bedrock.

The Glacial Tills in general consisted of grey slightly sandy silt and/or slightly sandy slightly gravelly silt with occasional, some or many cobbles and boulders.

Intact bedrock was encountered at many of the boreholes at a depth ranging from 2.60m to 3.50m below ground level. Bedrock is described as weak, locally strong and/or strong, locally weak thinly laminated fine and medium grained siltstone.

Bedding planes are defined as the surface that separates one stratum, layer or bed stratified rock from another. Discontinuity is defined as the plane of physical weakness where the

tensile strength perpendicular to the discontinuity or the shear strength along the discontinuity is lower than that of the surrounding soil or rock material.

Weathered bedrock was also encountered in the boreholes at shallower depths and for detailed descriptions of ground conditions encountered please refer to the engineering logs included in appendices 1 and 2 of this report.

The fieldwork was carried out in accordance with IS EN 1997-2 and BS5930, 2015 Code of Practice for Site Investigations with precedence given to IS EN 1997-2 where applicable.

The fieldwork locations were set out on site using a Trimble CU Bluetooth GPS Surveying Unit and the co-ordinates are included on the logs presented in the appendices.

All fieldwork co-ordinates are reported to Irish Transverse Mercator (ITM) with Reduced Levels recorded relative to Malin Head Datum and with an accuracy level of + or - 0.10m.

4.0 Laboratory Testing

Representative samples recovered from the boreholes and trial pits were scheduled for testing in the laboratory.

The test schedules were prepared by the Client's Engineer and included some or all of the following tests on disturbed soil samples and soil core samples:

- Natural Moisture Content.
- * Atterberg Limits.
- * Particle Size Distribution.
- * Particle Density.
- Organic Content.
- * Chemical (pH).
- * Compaction.

The test schedules also included some or all of the following tests on rock core samples:

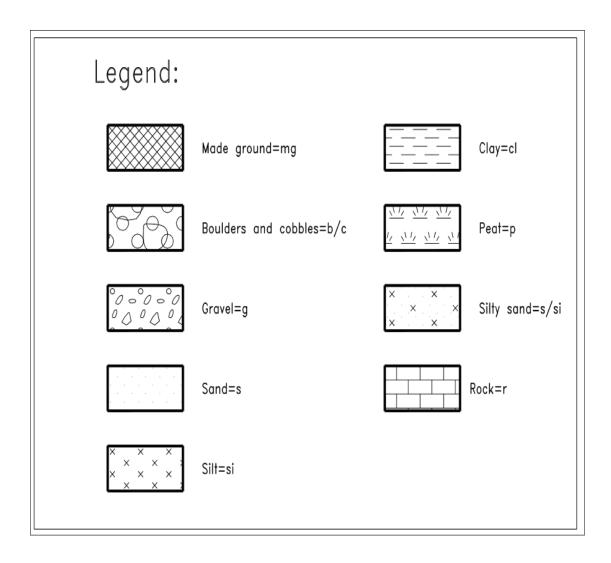
- Point Load.
- * UCS.
- * Single Point Thermal Resistivity (ASTM5334).
- * Five Point Thermal Resistivity.
- * Cerchar
- * Thermal Conductivity & Resistivity.

The soil and rock descriptions as noted on the borehole and trial pit logs are in general visual descriptions as observed and logged by our Engineers and are described in accordance with IS EN 1997-2 and BS5930, 2015 Code of Practice for Site Investigations.

Soils descriptions (cohesive or otherwise) are also initially assessed based on the texture and 'feel' of the soil materials as witnessed by our Geotechnical Engineers and in accordance with IS EN 1997-2 and BS5930.

Where laboratory classification tests have been carried out on soil or rock samples then these visual descriptions have been amended accordingly to take into account the results of these classification tests.

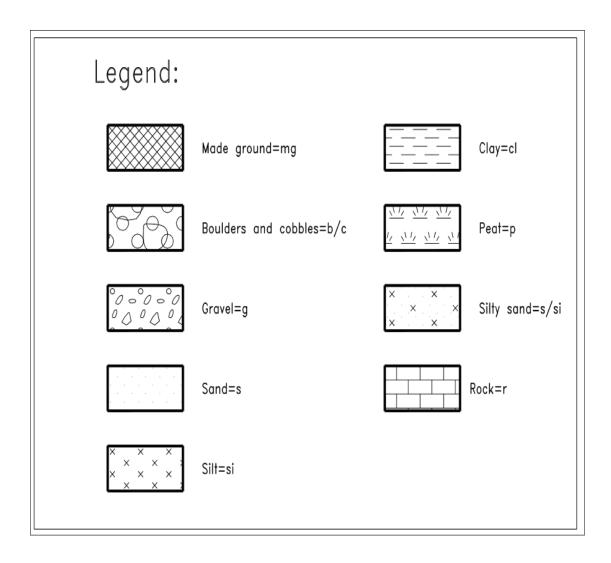
The records of all fieldwork, laboratory test results and photographs are included in the appendices of this Factual Report.


Ronan Killeen Chartered Engineer Irish Drilling Limited February 23rd 2023

Appendix 01 Trial Pit Records

The following Key Legend Table details the symbology used in general on the engineering logs to describe ground conditions encountered:

- 1					ks Landfal Co Clare	l					TRIALPIT: TP-0 Sheet 1 of 1	1
(CLII	ENT: C	orio (Genera	tion					Co-ordinates:	Rig: CAT 130A	
-		INEER:								E 494,407.1 N 667,724.8	Rev: DRAFT	
V 1 2	GRC	nd level: 1 DUNDW. r strikes: dry	ATE				PIT I	DIME	CTION NSION BY: DO	: 3.00m * 1.00 D	DATE: 24.11.22 Shoring/Support: N/A Stability: Pit stable.	
	Depth (m)	Date	Water	Samples	Depth (m)	SPT (N) In Situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DESCRII	PTION	Instrument/ Backfill
INDERCOCK IPS FILET NOV 29 ZOZZ:GFV ID GIN I AGS 44.6DI ZZIZIZ3				B 1 D 2 D 3 O 0 4	0.50-0.90 0.50-0.90 0.50-0.90 0.50-0.90		END	13.24		Firm grey slightly sandy organic SILT with low content. Cobbles are angular to subangular of shale. 0.70m: thermal resistivity test expedited. TP terminated at 0.90m bgl. Obstruction as rock	ale. Boulders are angular to	
KIALPII SC	em	arks: T	негта	ii icsistiv	ny iesi at 0.70	ın ogı. 1	r ury o	ii excava		backfilled with arisings. drilling LTD	Ph. Fax	2:15


LOC CLI	CATION: ENT: Co	: Doo orio (onbeg, Generat	ks Landfal Co Clare tion	l				Co-ordinates: Rig: CA	of 1 T 130A	
Grou GRO	GINEER: and level: 7 OUNDW. er strikes: dry	.28m (O.D.			PIT I	DIME	CTION NSION BY: DO	: 3.00m * 1.00 D Stabil		
Depth (m)	Date	Water	Samples	Depth (m)	SPT (N) In Situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DESCRIPTION		Instrument/ Backfill
-0 - - - -			00 4 3 1 2 2 3 3	0.30-0.75 0.50-0.90 0.50-0.90 0.50-0.90			7.08	0.20	TOPSOIL: Soft dark brown gravelly SILT. Firm grey slightly sandy organic SILT with low cobble contestions angular to angular of shale. 0.70m: thermal resistivity test expedited.	nt. Cobbles are	
) GINT AGS 4_0_4.GDT 22/2/23			5 6 7 BB P BB BB	1.30-1.70 1.30-1.70 1.30-1.70		X	5.58	1.70	Firm grey orange slightly gravelly slightly sandy organic SII content and low boulder content. Cobbles are subangular to Boulders are subangular to angular of shale. TP terminated at 1.70m bgl. Obstruction as rock.	T with medium cobble ingular of shale.	
TRIALPIT SCEIRDE ROCK TPS FILE 1 NOV 29 2022.GPJ ID GINT AGS 4_0_4.GDT 22/2/23 BA S	narks: T	herma	ıl resistivi	ity test at 0.70	om bgl. T	P dry o	n excava		backfilled with arisings.	Scale: 1:15 Ph. Fax	

Appendix 02 Borehole Records (Rotary Core)

The following Key Legend Table details the symbology used in general on the engineering logs to describe ground conditions encountered:

Project Sceirde Rocks	Landfall		Loca	tion		DRILL	HOLE No
			Doo	onbeg, Co Clare		ы	H-01
Job No	Date 23-11-22	Ground Level (m OD))	Co-Ordinates ()		Ю	T-U1
2022CE106	28-11-22	7.85		E 494,304.2	N 667,880.9		
Engineer			•			Sheet	1 of 4
GDG						Status DR	AFT

	TOP	(CDT)			ъ .		STRATA			\dashv
Depui	TCR (SCR)	(SPT) Fracture	Red'cd	Legend	Depth (Thick-			CRIPTION		↲.
Date '	RQD	Spacing	Level	Legend	ness)	Discontinuities	Detail	Main		1
0.00					-	0.00 - 1.70 : overburden.		Open hole drilling. No re	ecovery.	A Tractumentous A
	- - -	NA			(1.50)					A A A A A A
1.50			6.35	<u> </u>	1.50			Soft orangish brown SII	Т	٦٠.
		NA	6.15	W/X	1.70	1.70 - 3.50 Non-intact as	weathered	(0.10 m recovered).	/	
	100				-	rock.		Brown sandstone COBE	BLE.	/
2.60	100	NI			(1.80)			Weathered rock. Recovered as angular fit sized clasts of strong and thinly laminated grey an grained siltstone with subrown iron stain and por	d medium strong d dark grey fine rficial orangish	
	-				-			3.00m to 3.50m: weak d	ark grey silty fine	0
3.50			4.35		3.50			gravel sized clasts as prorock.	bable residual	0
3.30	100 (20)	18	1.33	× × × × × × × × × × × × × × ×		3.50 - 31.00 Discontinui and closely spaced to 10 locally medium spaced, 1 becoming medium space	.20m, then rom 18.00m d. locally	Strong, locally weak and thinly laminated grey an and medium grained SII interbedded with 1 to 5m	d dark grey fine TSTONE thickly	0000000
	-			× × × × × ×		closely spaced, dipping 1 planar, smooth, with 0.5 grey silt smear.	to 2mm thick	fine sandstone laminae.		000
4.70		28		X	-	grey sin sinear.				0
	100 (88)			× × × × × × × × × × × ×	- - - -					0000
5.50		27		X X X X X X X X X	-					Pc
	100	41		x x x x x						0
	100 (96)			X X X	-					Pc
	-			× × × × × ×	-					o'
6.40										þ
	100	20		x x x x x x						þ.
	(94)			X X X X X X	-					6
	-			× × × × × × × × ×	-					0
7.30										0
	100	15		X	-	7.55 7.90 Joint auto-	tical din mlana			10
	(92)	-		× × × × × ×	-	7.55 - 7.80 Joint, subvers smooth, with 0.5 to 1mm	ithick grey silt			6
8.00				[X X X]		smear, open.				<u> P</u>
	Dril	ling Progr		Water			Rotary	Flush	GENERAL REMARKS	

H		Drilling	Progres	ss and V	Vater O	bservatio	ons]	Rotary 1	Flush		GENERAL
ROCK RC	Date	Time	Depth	Cas Depth	ing Dia	Core Dia	Wa Strike	ter Standing	From (m)	To (m)	Type	Return (%)	REMARKS
UK DH (SPTS) SCEIRDE ROC				1.50	96				0	31	Polymer	100	1 litre of polydrill used. 50mm standpipe installed.
က္လို	All dimen	cione in C	1: t. C:	- C		N (- 41	/ 001	1.4				D.:11	I I 1 D

All dimensions in metres Scale 1:50

Client: Corio Generation Method/ CS14 Plant Used

Driller AZ EAT

Project Sceirde Rocks	s Landfall		Loca	tion		DRILI	LHOLE No
			Doo	onbeg, Co Clare		ь	H-01
Job No	Date 23-11-22	Ground Level (m OD))	Co-Ordinates ()		Ь	П-0 І
2022CE106	28-11-22	7.85		E 494,304.2	N 667,880.9		
Engineer			•			Sheet	2 of 4
GDG						Status DI	RAFT

	GDG												Status DRAFT	
RU	N DET	ΓAILS							STRA	TA			•	ent/
Depth	TCR	(SPT)	Red'cd		Deptl	h				DESC	CRIPTI	ON		Instrument/ Backfill
Date	(SCR) RQD	Fracture Spacing	Level		(Thick- ness)	Dis	continuit	ies	Det	ail		M	ain	Inst
-	100 (94) 16	18		× × × × × × × × × × × × × × × × × × ×		8.8 smc	ooth, with ear, open. 0 - 8.90 J ooth, with	oint, dippin 10.5 to 1mm	n thick grey g 60°, stepp n thick grey	silt ed,	thinly la and med interbed	minated grey lium grained ded with 1 to	and medium strong, and dark grey fine SILTSTONE thickly 5mm thick light grey ae. (continued)	Introdución descriptions descriptions descriptions descriptions descriptions descriptions descriptions descriptions descriptions described descriptions described descriptions described descriptions described describe
9.60	100 (94) 52	11		X	- - - - - -	9.0 step	0 - 9.15 J	oint, subver ooth, with 0	tical dip, 5 to 1mm t					
-	100 (96) 62	5		× × × × × × × × × × × × × × × × × × ×	- - - - - -						10.30-10 fractured	0.50m: UCS d at minimun	Test-extremely weak, n loading.	
11.50		5		× × × × × × × × × × × × × × × × × × ×	- - - - -									
24.11 13.00	100 (91) 72	5		× × × × × × × × × × × × × × × × × × ×	- - - - - - -									
	100 (92) 74	6		× × × × × × × × × × × × × × × × × × ×	- - - - - - -									
14.50		3		× × × × × × × × × × × × × × × × × × ×	- - - - - -									
-	100 (90) 70	4		× × × × × × × × × × × × × × × × × × ×	- - - - - - - -									
		ling Progr						.4		Rotary			GENERA	
Date	Tin			asing Di	ia Co	re Dia mm	Strike	ater Standing	From (m)	To (m)	Type	Return (%)	REMARK	
24/11/22 25/11/22	2 17.0 2 08.0												1 litre of polydrill us 50mm standpipe ins	sed. stalled.

4 0 4.GDT 22/2/23	- - - - - - -	100 (92) 74		6	X X X X X X X X	× × × × × × × × × ×											、つ、つ、つ、つ、つ、
1 NOV 30 2022.GPJ ID GINT AGS 4_0_4.GDT	14.50	100 (90) 70		4	× × × × × × × × × × × × × × × × × × ×	× ×											く、ロ、く、ロ、く、ロ、く
빌		Dri	lling	Progre	•	•	bservati	ons			Rotary	Flush				GENERAL	
X S S	Date	Tir	ne	Depth	Cas Depth	sing Dia	Core Dia	Strike Wa	ater Standing	From (m)	To (m)	Туре	Return	(%)		REMARKS	
4 UK DH (SPTS) SCEIRDE ROCK RC	24/11/22 25/11/22	2 17. 2 08.	00 00	13.00 13.00										1	1 litre 50mm	of polydrill used. standpipe installed.	
IDL AGS4	All dime me Scale	nsions i tres : 1:50	in C	lient: Cor	io Generat	ion	Metho Plant U		14					Driller AZ	r	Logged By EAT	

Project Sceirde Rocks	Landfall	Lo	cation		DRILLHOLE No
		Ι	Ooonbeg, Co Clare		BH-01
Job No	Date 23-11-22	Ground Level (m OD)	Co-Ordinates ()		БП-01
2022CE106	28-11-22	7.85	E 494,304.2	N 667,880.9	
Engineer			•		Sheet 3 of 4
GDG					Status DRAFT

		CAILS (SPT)			Ъ	epth			STRA		an inari	ONT			\dashv
Depth Date	TCR (SCR)	Fracture	Red'cd Level	Legen	1 (Thi	ck-					CRIPTI				\dashv
16.10	RQD	Spacing		ı	11000) D	iscontinuit	ies	Det	aıl	C4		Main	medium strong,	4
16.10	100 (95) 71	4		× × × × × × × × × × × × × × × × × × ×	-						thinly la and med interbed	minated gr lium graine ded with 1 dstone lam	ey and d SILT to 5mr	dark grey fine STONE thickly n thick light grey	
17.60		7		X X X X X X X X X X X X X X X X X X X	-	7.50)									50° 0° 0° 0°
19.10	100 (78) 71	3		X X X X X X X X X X X X X X X X X X X							18.60m and darl	to 20.00m: c grey fine	thinly grained	interbedded grey I limestone.	
	100 (94) 70	5		X	- - - - - - -										
20.60		5		X X X X X X X X X X X X X X X X X X X	-										
22.20	100 (90) 79	2		X											
23.10	100 (92) 63	7		X X X X X X X X X X X X X X X X X X X	-										
	100 (95)	4		× × × × × × × × × × × × × × × × × × ×	<u> </u>										
		ling Progr			er Ol	Servat	ions	otor		Rotary				GENERAL	7
Date	Tin	ne Depth	Depth	Casing 1 L	Dia	Core Dia	Strike	ater Standing	From (m)	To (m)	Type	Return (%	⊣	REMARKS	
													1 lit 50n	tre of polydrill use nm standpipe inst	ed. all
All dime	ensions in tres e 1:50	Client: Co	rio Gener	ration		Metho	od/ CS	<u> </u>	II .			Dı AZ	iller	Logged By EA	=

Project Sceirde Rocks	Landfall	I	Location		DRILLE	HOLE No
			Doonbeg, Co Clare		DL	I-01
Job No	Date 23-11-22	Ground Level (m OD)	Co-Ordinates ()		рп	1-01
2022CE106	28-11-22	7.85	E 494,304.2	N 667,880.9		
Engineer					Sheet	4 of 4
GDG					Status DRA	AFT

G	iDG								Status DRAF1	
RUN	N DE	ΓAILS					STRATA			ent/
Depth	TCR (SCR)	(SPT) Fracture	Red'cd Level	T	Depth (Thick-		DES	CRIPTION		Instrument/ Backfill
Date	RQD	Spacing	Level	1	ness)	Discontinuities	Detail	Mair		Inst Bac
24.70	71	8		× × × × × × × × × × × × × × × × × × ×	-			Strong, locally weak and thinly laminated grey are and medium grained SII interbedded with 1 to 51 fine sandstone laminae.	nd dark grey fine LTSTONE thickly mm thick light grey	
-	100 (95) 86	3		X X				25.70m to 25.75m: med	lium strong fissile.	
26.30	70	6		X						
- - - - -	70 (64) 30	4		X X X X X X X X X X X X X X X X X X X	- - - -	27.70 20.00 P. 11.1	C 1			
28.00		NR		X X X X X X X X X X X X X X X	-	27.70 - 28.00 Possible a No recovery as washout drilling. No record of ca	of fines during			
-	100 (94) 80	7		X X X X X X X X X X X X X X X X X X X	- - - - - -					
29.50	100	5								
25.1131.00	100 (98) 67	6	-23.16		31.00					
25.1131.00 28.11			23.10	^	51.00			BH terminated at 31.00 instruction.	m bgl on REs	
	Dril	lling Progr	ess and	Wate	r Obser	vations	Rotary	/ Flush	GENERAL	

1 NOV 30 2022. GPJ, ID GINT AGS 4 0 4 GDT 22/2/23	29.50 	100 (98) 67		6	X X X X X X X X X X	× × × × × × × × × ×	31.00					BH tern instruct	ninated at 31.	00m b _i		
=		1			ess and V						Rotary				GENERAL	
Ŋ.	Date	Tir	ne	Depth	Depth	sing Dia	Core D mm	Strike	nter Standing	From (m)	To (m) Type	Return (%)		REMARKS	
UK DH (SPTS) SCEIRDE	25/11/22 28/11/22	08.	00	31.00 31.00										50mr	e of polydrill usec n standpipe instal	lled.
IDL AGS4	All dime met Scale	nsions tres 1:50	in C	lient: Coi	rio Genera	tion	Meth Plant	nod/ CS] t Used	4				Drill AZ	er	Logged By EA7	Γ

Project Sceirde Rocks	Landfall	L	ocation		DRILLHOLE No
]	Doonbeg, Co Clare		BH-02
Job No	Date 21-11-22	Ground Level (m OD)	Co-Ordinates ()		ВП-02
2022CE106	22-11-22	9.90	E 494,376.4	N 667,776.1	
Engineer			•		Sheet 1 of 3
GDG					Status DRAFT

RII	V DET	TAILS			STRATA		ıt/
Depth	TCR	(SPT)	Red'cd	Depth		SCRIPTION	V Instrument/
Depui	(SCR) RQD	Fracture Spacing	Level	Legend (Thick- ness)	Discontinuities Detail	Main	Instrume
0.00	RQD	Браспід		-	0.00 - 1.80 : overburden.	Open hole drilling. No recovery.	
	- - -	NA		(1.50)			
1.50	100	NA	8.40 8.20 8.10	1.50 × × 1.70 0 0 1.80	1.80 - 2.60 Non-intact as weathered	Very soft orangish brown slightly sandy SILT. Sand is coarse. \1.60m: becoming grey.	
	-	NI		(0.80)	rock.	Subangular to subrounded fine limestone and siltstone GRAVEL. Weathered rock.	
11 2.60	100	5	7.30		2.60 - 23.70 Discontinuities, very closely locally closely spaced to 11.10m, then locally medium spaced, dipping 10 to 12°, planar, smooth, with 0.5 to 1mm thick grey silt smear.	Recovered as angular fine to coarse gravel sized clasts of strong and medium strong thinly laminated grey and dark grey fine grained siltstone with surficial orangish brown iron stain and powder.	
4.20	(89)	28		X X X X X X X X X X X X X X X X X X X	thick grey sht shear.	Weak, locally strong, thinly laminated grey and dark grey fine and medium grained SILTSTONE thickly interbedded with 1 to 5mm thick light grey fine sandstone laminae.	
	100 (87) 8	18		× × × × × × × × × × × × × × × × × × ×			
5.60		22		X			
7.20	100 (95)	23		x x x x x x x x x x x x x x x x x x x			
,.20	100 (94)	16		X			

_4.GDT 22/2/23	5.60			22	× × × × ×	× × - × × - × × - × × - × × - × × - × × -										
1 NOV 30 2022.GPJ ID GINT AGS 4_0_4.GDT 22/2/23	7.20	100 (95)		23	× × × × × × × × ×	× × [× × ×] × × × × × × × × ×										
	-	100 (94)		16	× × × ×	× × × × × × × × × ×										
C FILE		Dril	lling				bservatio				Rotary					GENERAL
S R	Date	Tin	ne	Depth	Cas Depth	Dia Dia	Core Dia mm	Strike	ater Standing	From (m)			Return	ı (%)		REMARKS
4 UK DH (SPTS) SCEIRDE ROCK RC	21/11/22 22/11/22	17.08.0	00	2.60 2.60	1.50	96				0	23.7	Polymer	10	0	2 litre BH b	es of polydrill used. ackfilled.
IDL AGS4	All dimer met Scale	nsions i res 1:50	in C	lient: Cor	io Generat	ion	Method Plant U	I/ CS	14					Drill AZ	er	Logged By EAT

Project Sceirde Rocks	Landfall	I	Location		DRILLHOLE No)
			Doonbeg, Co Clare		BH-02	
Job No	Date 21-11-22	Ground Level (m OD)	Co-Ordinates ()		DN-02	
2022CE106	22-11-22	9.90	E 494,376.4	N 667,776.1		
Engineer			•		Sheet 2 of 3	
GDG					Status DRAFT	

	OD C									
RU		TAILS					STRATA			ent/
Depth	TCR	(SPT) Fracture	Red'cd		Depth		DES	CRIPTION		kfill
Date	TCR (SCR) RQD	Spacing	Red'cd Level	Legend	(Thick- ness)	Discontinuities	Detail	Mai	in	Instrument/ Backfill
8.60	22	2		X X X X X X X X X X X X X X X X X X X	-			Weak, locally strong, t and dark grey fine and SILTSTONE thickly in 5mm thick light grey fi laminae. (continued)	hinly laminated grey medium grained nterbedded with 1 to ine sandstone	
1000	100 (95)	20		× × × × × × × × × × × × × × × × × × ×	-					
10.20	100 (94) 35	14		X						
11.60		12		X X X X X X X X X X X X X X X X X X X	-					
-	100 (86) 65	8		X X X X X X X X X X X X X X X X X X X	-					
13.20	100 (94) 75	7		X X X X X X X X X X X X X X X X X X X	(21.10)					
14.60		8			-					
14.60	100 (89) 69	9								
4	Dei	lling Progr	000 000	Wata	r Obser	vations	Potors	Fluch	CENEDAL	

1 NOV 30 2022.GPJ ID GINT AGS 4 0 4.GDT 22/2/23	14.60	100 (94) 75		7	X X X X X X X X X X	^ ^											
	-	100 (89) 69		9	× × × × × × × ×	× × - × × -											
RC FILE	Date	Dri			ss and V		bservatio		ater Standing		Rotary To (m)		Return	2 (9/2)		GENERA REMARK	
4 UK DH (SPTS) SCEIRDE ROCK RC	Date	111	пе	Depth	Depth	Dia	mm	Strike	Standing	From (m)	10 (m)	Type	Keturi	1 (70)	2 litre BH ba	es of polydrill ackfilled.	
IDL AGS4	All dime me Scale	ensions i tres e 1:50	in C	Client: Cori	o Generat	ion	Method Plant U		14					Drill AZ	er	Logged By E.	AT

Project Sceirde Rocks	Landfall	I	Location	DRILLHOLE No
			Doonbeg, Co Clare	BH-02
Job No	Date 21-11-22	Ground Level (m OD)	Co-Ordinates ()	БП-02
2022CE106	22-11-22	9.90	E 494,376.4 N 667	7,776.1
Engineer				Sheet 3 of 3
GDG				Status DRAFT

		TAILS						STRA						Instrument
БСРШ	TCR (SCR)	(SPT) Fracture	Red'cd	Legend (Th	Depth ick-					CRIPTIO	N			Instrument/
Date	RQD	Spacing	Level		s) Di	iscontinuit	ies	Deta				lain		Ins
16.20	100 (95) 72	7		× × × × × × × × × × × × × × × × × × ×						Weak, loca and dark g SILTSTON 5mm thick laminae. (c	rey fine ar NE thickly light grey	nd medi interbe fine sa	laminated grey um grained added with 1 to ndstone	
17.60		6		× × × × × × × × × × × × × × ×										
	100 (95) 90	4		× × × × × × × × × × × × × × × × × × ×						18.55-18.6	5m: point	load te	st-very weak.	
19.20	100 (85) 56	12		× × × × × × × × × × × × × × × × × × ×										
20.50		6		× × × × × × × × × × × × × × × × × × ×										
22.10	100 (95) 92	6		× × × × · · · · · · · · · · · · · · · ·										X//XX///XX//X
	100 (96) 80	8		× × × × × × × × × × ×										X//XX///XX///
1123.70		5	-13.81	× × × × × × × × × × × × × × × × × × ×	23.70					BH termina	ated at 23.	70m bg	gl on REs	
	Dril	ling Progr			bservat	ions		I	Rotary				GENERAL	
Date	Tin	ne Depth	Depth	Casing 1 Dia	Core Dia	Strike	nter Standing	From (m)	To (m)	Type R	eturn (%)		REMARKS	
Date 22/11/22	17.0	00 23.70	_ 									2 litre BH ba	s of polydrill us ackfilled.	ed.
All dimer met Scale	nsions i	n Client: Co	rio Gener	ration	Metho Plant	od/ CS:	<u> </u>				Drill AZ	ler	Logged By EA	<u> </u>

										monucu				
	Date	Drilling Time	Progres		Vater O	bservatio	nter Standing	From (m)	Rotary To (m)		Return	n (%)		GENERAL REMARKS
ソンと コイドコンり (のこんの) ロイ とり	22/11/22	17.00	23.70	- [2 litre BH b	es of polydrill used. ackfilled.
ŏ	A 11 .1:			_			 		$\overline{}$					

Appendix 03 Thermal Resistivity/Conductivity Records

IRISH DRILLING LTD. Project: Sceirdre Rocks Landfall

Loughrea Co. Galway Client: Corio

Location: Doonbeg, County Clare

Tel: (091) 841274 Fax: (091) 880861 Date: 24/11/2022 Sheet No. 1

Checked: RK

Thermal Conductivity / Thermal Resistivity Records

Date	Location	Depth m(bgl)	Thermal Conductivity (W/m.K) K	Thermal Resistivity (K.m/W) R	Temperature Celcius
24/11/2022	TP 01	0.70	1.189	0.841	10.161
24/11/2022	TP 02	0.70	1.225	0.816	9.615

Appendix 04 Groundwater Readings

Sceirde Rocks Landfall GI, Doonbeg - Water Levels

Dates	12/07/2022	05/01/2023	03/02/2023	03/02/2023
Locations				
BH 01	6.4m	5.2m	5.08m	Logger Removed

Remarks:

Readings recorded from ground level to top of water level.

Appendix 05 Laboratory Test Results

Project ID	2022CE106
Project Name	Sceirde Rocks Landfall
Schedule ID	2022CF106_1

Client	Corio Generation
Due Date	29/11/2022 12:30
Scheduled Date	29/11/2022 12:30

Remarks	Turnaround	

	<u> </u>	Samp	le Details		I			Clas	sifica					(Chen	nical /	/ Con	crete	•		Cor	mpac	ction	R	ock	Othe	r			Τ	1 1	_	
Location	Depth (m)	Base Depth	Sample Type	Sample Ref	Date Sampled	Storage	Moisture Content	Atterberg 4 Point	Particle Density by Gas Jar	Particle Density by Small Pyknometer	Particle Size Distribution	Hydrometer	Organic Content	Loss On Ignition	Sulphate Total	Sulphate Water Gravimetric	Carbonate Titration	ph	Chloride Content	Chloride Content Acid	Compaction Light	Compaction Heavy	Compaction Vibrating Hammer	Rock Uniaxial compression	Point Load	Single point Thermal resistivity testing as per ASTM5334	Five point Thermal resistivity testing	CERCHAR test for abrasivity	Thermal Conductivity and Resistivity	Thermal Conductivity, Resistivity, Vol.			
TP-01	0.50	0.90	В	1	24/11/22						1										1						1					(1 de be	TR: 5 Point 1st test to be done at natural moisture content of sample and 5th test to be done on completely dried material. In between tests to be done on evenly spread moisture content values.)
TP-01	0.50	0.90	D	2	24/11/22		1	1					1																			Α	ALS 230112-87
TP-01	0.50	0.90	D	3	24/11/22																												
TP-01	0.50	0.90	U100	4	24/11/22		1																			1						C	Compacted at Optimum moisture content (OMC)
TP-02	0.30	0.75	U100	4	24/11/22		1																			1						C	Compacted at Optimum moisture content (OMC)
TP-02	0.50	0.90	В	1	24/11/22																					1							Compacted at Optimum moisture content (OMC)
TP-02	0.50	0.90	D	2	24/11/22		1	1					1					1														Α	ALS 230112-87
TP-02	0.50	0.90	D	3	24/11/22																												
TP-02	1.30	1.70	В	5	24/11/22																1						1					(1 co de be	TR: 5 Point 1st test to be done at natural moisture content of sample and 5th test to be done on completely dried material. In between tests to be done on evenly spread moisture content values.)
TP-02	1.30	1.70	В	6	24/11/22						1																						
TP-02	1.30	1.70	D	7	24/11/22		1	1		1			1																			Α	ALS 230112-87
BH-01	0.00	1.50	С	1	24/11/22		1							1			ı									I		1		1	1 1		
BH-01	1.50	2.60	C		24/11/22																										+ +	-	
BH-01	2.60	3.50	C		24/11/22																												
BH-01	3.50	4.70	С		24/11/22																											T	

Project ID	2022CE106
Project Name	Sceirde Rocks Landfall
Schedule ID	2022CF106_1

	Corio Generation
Due Date	29/11/2022 12:30
Scheduled Date	29/11/2022 12:30

Remarks	

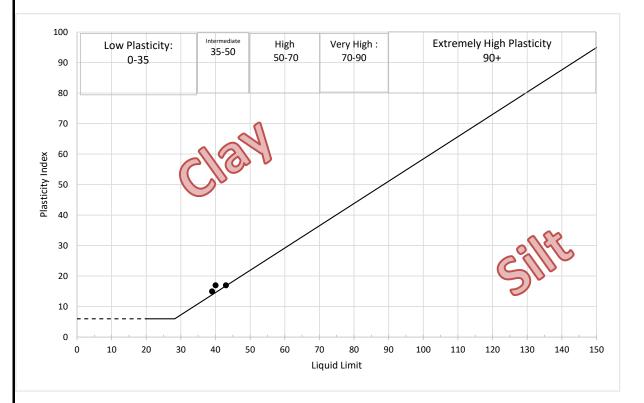
Turnaround

											1	1							- 1			1										٦
		Sampl	e Details	1				Class	ificatio	n				Cher	mical ,	/ Cor	crete	Э		Com	pacti	ion	Roc	k C	Other							
									į	:														2	as per ASTM5334	D		≥	<u>\o</u>			
									9															d d	בו בי	stin		ţţ	, ,			
									2													ЭĒ		.4	Î	/ te	_	esis	ţ			
									<u>₽</u> ₫						tric							Ē	6	į		ixit	ĭ <u>₹</u>	Ř	sis			
									Gas Jar	Г					Gravimetric				_			포	SSi	100	ß	sist	ras	au	Å,			
								1	9 0	ipit					rav	Ē			Acic		>	ting	Jpre	ā	₫ .	<u>e</u>	rab	vity	vity			
							ant	ij	د ا ح و ا و	istr		Ħ	ڃ		ρ.	atio		ar .	j (ght	eav	bra	S	1	334	шa	t fo	ucti	ncti			
		_	90	-	Sampled		onte	Po-	nsit	e o	_	ute	nitic	otal	/ate	Ħ		onte	Sufe	: ا <u>ت</u>	Ĭ	<u> </u>	gi	È	M5	The	tes	puc	puc			
_	Ê	eptt	Š	Re	g g	_	O	.g 4	å å	Siz	ete	ပိ	g (e	e	ate		ŏ	ŏ	otio .	cţio	ig .	ja j	ad	ST	ıt	AR	ŏ	<u>ŏ</u>			
tio	- H	۵	ble	be	တိ	age	ţŗ	pe	<u>0</u>	Se	Jo.	anic	ō	hat	hat	Ö		ride	ig	bac	ba	: ba	j		e /	bo	2	ma	ma			
Location	Depth (m)	Base Depth	Sample Type	Sample Ref	Date	Storage	Moisture Content	Atterberg 4 Point	Particle Density by Gas Jar Particle Density by Small Pyknometer	Particle Size Distribution	Hydrometer	Organic Content	Loss On Ignition	Sulphate Total	Sulphate Water	Carbonate Titration	hh	Chloride Content	Chloride Content Acid	Compaction Light	Compaction Heavy	Compaction Vibrating Hammer	Rock Uniaxial compression	Point Load	g s	Five point Thermal resistivity testing	CERCHAR test for abrasivity	Thermal Conductivity and Resistivity	Thermal Conductivity, Resistivity, Vol.			
BH-01	4.70	5.50	C	0,	24/11/22	0,	_	1	- "	+=	+			0)	0,		3		_	- 		- 		<u>. U.</u>	, 10	-					1	
BH-01	5.50	6.40	С		24/11/22																			1				*	*			
BH-01	6.40	7.30	С		24/11/22																											
BH-01	7.30	8.00	С		24/11/22																											
																																moved down to first available
BH-01	8.00	9.60	C		24/11/22					-					<u> </u>													1				specimen
BH-01	9.60	10.10	С		24/11/22				_	_	-				₩				_				1	1								
BH-01 BH-01	10.10 11.50	11.50 13.00	C		24/11/22 24/11/22				_		+				₩				_					1			- 1					
BH-01	13.00	14.50	C		25/11/22					-					+-				-					-			- 1					
BH-01	14.50	16.10	C		25/11/22				_		+				+									1							+	
BH-01	16.10	17.60	C		25/11/22				_	+	1				+					-		-		1								
BH-01	17.60	19.10	C		25/11/22					+					${}^{+}$																	
BH-01	19.10	20.60	C		25/11/22										T																	
BH-01	20.60	22.20	С		25/11/22																											
BH-01	22.20	23.10	С		25/11/22																		1	1								
BH-01	23.10	24.70	С		25/11/22																											
BH-01	24.70	26.30	С		25/11/22																						1	1	*			
BH-01	26.30	28.00	С		25/11/22																											
BH-01	28.00	29.50	С		25/11/22																			1								
BH-01	29.50	31.00	С		25/11/22										<u> </u>									_								
BH-02	0.00	1.50	С		21/11/22				_	-	-				<u> </u>								_	_							_	
BH-02 BH-02	1.50	2.60	С		22/11/22 22/11/22				_	_	-				₩				_													
BH-02	2.60 4.20	4.20 5.60	C C		22/11/22				_		+				₩				_					1				*	*			
BH-02	5.60	7.20	C		22/11/22					-	+				+-				-		-		-								-	
BH-02	7.20	8.60	C		22/11/22		H		+	+	1	1-	1		+			$\vdash \vdash$	\dashv		\dashv			1						!	+	
511-02	7.20	0.00					\vdash		_	-	\vdash				\vdash				_		\dashv											moved down to first available
BH-02	8.60	10.20	С		22/11/22																							1	l			specimen
BH-02	10.20	11.60	C		22/11/22		H		1	1	1	1			T				T		\dashv											·
BH-02	11.60	13.20	С		22/11/22					i					1						1		1	1			1					
BH-02	13.20	14.60	С		22/11/22																											
BH-02	14.60	16.20	С		22/11/22																							1	*			

				_	_	
Project ID	2022CE106	Client	Corio Generation	Remarks	Turnaround	
Project Name	Sceirde Rocks Landfall	Due Date	29/11/2022 12:30		•	
Schedule ID	2022CE106_1	Scheduled Date	29/11/2022 12:30			

		Sampl	le Details					Class	sificatio	on			(Chem	ical /	Conc	crete		C	ompa	ction	Ro	ock	Othe	r					
Location	Depth (m)	Base Depth	Sample Type	Sample Ref	Date Sampled	Storage	Moisture Content	Atterberg 4 Point	Particle Density by Gas Jar	Size Distribution	Hydrometer	Organic Content	Loss On Ignition	Sulphate Total	Sulphate Water Gravimetric	Carbonate Titration	hd	Chloride Content	ion Light	Compaction Heavy	Compaction Vibrating Hammer	Rock Uniaxial compression	oad	Single point Thermal resistivity testing as per ASTM5334		CERCHAR test for abrasivity	Thermal Conductivity and Resistivity	Thermal Conductivity, Resistivity, Vol.		
BH-02	16.20	17.60	С		22/11/22																									
BH-02	17.60	19.20	С		22/11/22																	1	1							
BH-02	19.20	20.50	С		22/11/22																									
BH-02	20.50	22.10	С		22/11/22																									
BH-02	22.10	23.70	С		22/11/22																		1							

Completed 10/02/23 5 3 0 1 2 0 3 0 0 0 1 0 0 2 0 0 4 12 3 2 3 4 0 0



Summary of Classification Test Results

roject No. 20220	CE106	6	Project	INAIIIE			Scei	rde R	ocks La	andfall					
Hole No.		Sar	nple	l		Soil Description	Dens bulk	ity dry	W	Passing 425µm	LL	PL	PI	Particle density	Remarks
Hole No.	Ref	Тор	Base	Туре		Soil Description	Mg/m		%	%	%	%	%	Mg/m3	Remarks
TP-01	1	0.50	0.90	В		Grey slightly sandy SILT.			29.0	97					
TP-01	2	0.50	0.90	D		Grey slightly sandy SILT.			29.0		43	26	17		МІ
TP-01	4	0.50	0.90	U100		Grey slightly sandy SILT.			29.0						
TP-02	4	0.30	0.75	U100		Grey slightly sandy SILT.			23.0						
TP-02	1	0.50	0.90	В		Grey slightly sandy SILT.			18.0						
TP-02	2	0.50	0.90	D		Grey slightly sandy SILT.			18.0	65	39	24	15		CI
TP-02	5	1.30	1.70	В		Grey-orange slightly sandy slightly gravelly SILT.			18.0						
TP-02	6	1.30	1.70	В		Grey-orange slightly sandy slightly gravelly SILT.			18.0	64					
TP-02	7	1.30	1.70	D		Grey-orange slightly sandy slightly gravelly SILT.			18.0		40	23	17	2.64-gj	МІ
I tests perfo	ormed	in acco	rdance v	vith BS	S1377:	1990 unless specified othe	rwise			· · · · · ·		,			
		ontent, L	L = Liqu			= Plastic Limit, PI = Plastic		Κ	Date F	rinted		Appr	oved	Ву	Table
Density Linear m wd - wat	easure	ment unles acement	s:		_imit e unless ngle poir	s: sp - sn	e density nall pyknom s jar	eter		0/2023		۲	5(75	1 sheet
wi - imn	nersion	in water		NP - No	on Plasti				QC F	rom No	: R1				1

	Plasticity (A-Line) Chart	Project Number
Project Name:	Sceirde Rocks Landfall	
Location:		2022CE106

Abreviations in the remarks column of the Classification Summary Sheet: C = Clay, M = Silt

Plasticity abeviations: L = Low, I = Intermediate = H = High, V = Very High, E = Extremely High.

The letter O is added to the symbol of any material containing a significant proportion of organic material.

Chart taken from BS5930: 2010

Particle Density by Gas Jar Tests - Summary of Results

Project Name

2022CE106

Sceirde Rocks Landfall

	Sample			Sail Description	Doutiele Deneite				
Hole No.	Ref	Тор	Base	Туре	Soil Description at test horizon	Particle Density Mg/m3	Remarks		
TP-02	7	1.30	1.70	D	Grey-orange slightly sandy slightly gravelly SILT.	2.64			
Notes						Data Drinta	T-11.		

otes	N
------	---

Tests performed in accordance with BS 1377 unless annotated otherwise

Gas Jar tests to BS1377: Part 2: 1990, clause 8.2

Date Printed

13/02/2023

	J	DRI			_	\ D.T.: ^				16-	.		FI 6 .			Job Ref		20	22CE106
IRLo	DRILLING.				P/ 	ARTIC	LE _	: SIZ	ZE D	IST _	RIE _	3U ⁻	10N	N		Borehol	e/Pit No.		TP-01
s	Site Name Sceirde Rocks							Landfall								Sample No.		1	
S	oil De:	scription	1	Grey	slightly sa	andy SIL	dy SILT.									Depth, r	m		0.50
	pecim eferer							Specir Depth							m	Sample	Туре		В
T	est Me	ethod		BS13	377:Part 2	:1990, c	laus	se 9.2								KeyLAB	3 ID	IDL1202211290	
	_	CLAY		SILT SAND										GRAVEL		COBBLES BOULDERS			
	100		Fin	ie	Medium	Coarse	e	Fin	ne	Med	ium	(Coarse	• —	Fine	Medium	Coarse		
	90						\downarrow							+					
	80						\downarrow							+					
%	70						+							+					
sing 9	60		_				+				\parallel			+					
Percentage Passing	50		_				\downarrow				\blacksquare			+					
sentag	40		_				\downarrow							4					
Perc	30		_				\downarrow							4					
	20						\downarrow				\perp			4					
	10						\downarrow							4					
	0																		
	0.0	001			0.01			0.1			Part	ticle	1 Size	m	m	10		100	1000
		article S		ving		Pol	rtial		imenta	ation			7		Dry M	Mass of sa	mple, g		344
		mm	oize	%	Passing	Fai	Particle Size %				6 Passing			I- D	mple Proportions			d=	
													1	V	ery coars			%	dry mass 0
		75 63			100	-							-	_	Gravel Sand				1 11
		50 37.5			100 100								-	F	ines <0.0	63mm			88
		28			100				+				1	_	rading A			I	
		14			100				\pm				1	D	100		mm		
	-	10 6.3			100	+			+				-)60)30		mm mm		
		5			100				╧				1	D	10		mm	<u> </u>	
		3.35			100				工]			Coefficient			
	\vdash	1.18			99 98				+				-	С	urvature	Coefficient			
	\vdash	0.6			97	+							1	R	emarks				
		0.425			97	\Box							_	Pr	reparation ar	nd testing in ac	cordance with BS	31377 unless no	oted below
		0.3			96	4	_				_	_							
	0.212 94 0.15 92			-															
		0.13			88														
	Ор	perator			Checke	d		Aį	pprove	ed				Sheet printed				1	
					Galway Roa				Darcy						13	3/02/2023 1	6:09		QC From No:R2

DRILL			_				Job Ref	202	22CE106			
' IR.	A TED				LE SIZE I	DISTRII	BUTION		Borehole/Pit No.		TP-02	
s	ite Nam	e	Sceirde Roc	ks Landf	fall				Sample No.		6	
s	oil Desc	ription	Grey-orange s	lightly sa	ndy slightly gr	avelly SIL	т.		Depth, m		1.30	
	pecimei eferenc				Specimen Depth			m	Sample Type		В	
T	est Meth	nod	BS1377:Part 2	2:1990, cl	ause 9.2				KeyLAB ID	IDL1	202211299	
		LAY	SILT ne Medium	Coarse	e Fine	SAND Medium	Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS	
	100 T		ie Medium	Coarse	e Fine	Medium	Coarse	Fine	Medium Coarse		.	
	90								/			
	80											
%	70											
ssing	60											
Percentage Passing	50											
rcenta	40	\dashv										
Pe	30											
	20											
	10											
	0.00)1	0.01		0.1		1		10	100	1000	
						Par	ticle Size	mm				
										_		
	Par	ticle Size	eving % Passing	Par	Sedimen ticle Size	Dr % Passing			ass of sample, g	672		
		mm	ŭ		mm			Sample Pro		% dry mass		
		75	100					Very coarse Gravel	9		32	
		63	100		+			Sand		 	10	
		50	83									
		37.5 28	83 83					Fines < 0.06	33mm	L	58	
		20	83		+			Grading A	nalysis			
		14	77					D100	mm	<u> </u>		
		10	75					D60	mm		0.11	
		6.3 5	72 71	_			—	D30 D10	mm	ļ		
		3.35	71				-	Uniformity (mm_ Coefficient	 		
		2	68		+			Curvature C				
		1.18	66							-		
		0.6	64				7	Remarks	dispersion to the second	14077	ted below	
		0.425	64 63	-⊩				Preparation and	d testing in accordance with BS	oi3// unless not	lea Delow	
	0.3 63											
	0.212 62											
		0.063	58									
	Ope	rator	Checke	ed	Approv	ved		5	Sheet printed		1	
					Dympna Dard	cy B.Sc.		13/	/02/2023 16:09		QC From No:R2	
			1								CO I TOTAL INC.INC	

IDL		Dry Density / Moisture Content Relationship							Job	Ref	2022CE106	
טו	' L				Compaction		·		Bor	ehole / Pit No	TP-01	
Site Name				Sceirde l	Rocks Landfall				Sample No		1	
Soil Descri	ption			Grey sligh	ntly sandy SILT.				Depth		0.50	m
Specimen	Ref.			Specim	en Depth			m	Sar	mple Type	В	
Test Metho	od		BS1377:Pa	art 4:1990	, clause 3.4, 2.5	ikg ra	mmer		Key	/lab ID	IDL1202211	1290
							Co	mpaction	Test	Reference/No.		
1.90 -			Ŋ		<u> </u>	Ι				0.5		7
			\setminus	\							% Air Voids	
	_			`\						————5 °	% Air Voids	
1.80 -	_		'	/ /						10	% Air Voids	
	-											
Dry Density, Mg/m3	-			•	•							
1.50 -	-											
1.40 -	-							1	,			
1.30 -	_							, ,				
0 5 10 15 20 25 30 35 40 Moisture Content, %												
	Preparation	on					М	aterial us	ed wa	s natural and a	ir dried	
	Mould Type							CBR				
_	Samples Used							Comp	osite	specimens test	ed	_
-	Material Retained on 37.5 mm Sieve % Material Retained on 20.0 mm Sieve %									0		\dashv
-	Particle Density - Assumed Mg/m³									2.65		\dashv
Γ	Maximum Dry Density Mg/m³									1.62		_
Optimum Moisture Content % 18								18				
Operator	Che	cked	Approved	Remarks	/ Report Date:						QC Form R	R4
Administrato	r		DCD (13.02.23)								Sheet 1 o	f 1

IDI	Dry Density / Moisture Content Rel	Job Ref	2022CE106		
IDL	Light Compaction	·	Borehole / Pit No	TP-02	
Site Name	Sceirde Rocks Landfall	Sample No	5		
Soil Description	Grey-orange slightly sandy slightly gravell	y SILT.	Depth	1.30 m	
Specimen Ref.	Specimen Depth	m	Sample Type	В	
Test Method	BS1377:Part 4:1990, clause 3.4, 2.5kg ra	ammer	Keylab ID	IDL1202211298	
		Compaction	n Test Reference/No.		
Material R	De .	Material us	— — — 5 ° · · · · · · · · · · · · · · · · · ·		
Maximun	n Dry Density Mg/m³		2.07		
	Moisture Content %		11		
Operator Che Administrator	cked Approved Remarks / Report Date: DCD 13.02.23			QC Form R4 Sheet 1 of 1	

IDL		DR.	NING						ength Index Tests by of Results									
Project No.)22CE10			Project N	ame				Sce	eirde F	Rocks L	_andfal	I					
Borehole	Sample		Specimen		Rock Type	Test see I		(N/V) bil		Dime	nsions		Force P	Equivalent diameter, De		Load th Index	Remarks (including water	
No.	Top Depth	Base Depth	Туре	Тор	Base	and Test condition	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	W	Dps	Dps'	 		Is	Is(50)	
BH-01	m 5.50	m 6.4	С	m 6	m 6.05		D	U	YES	mm	mm 63.4	mm	mm 63.4	kN 2.3	mm 63.4	MPa 0.6	MPa 0.6	
BH-01	9.60	10.1	С	9.7	9.80		D	U	YES		63.4		63.4	3.4	63.4	0.9	0.9	Weak
BH-01	11.50	13	С	12.5	12.60		D	U	YES		63.4		63.4	4.7	63.4	1.2	1.3	Weak
BH-01	14.50	16.1	С	15	15.10		D	U	YES		63.4		63.4	5.2	63.4	1.3	1.4	Medium Strong
BH-01	16.10	17.6	С	17.4	17.50		D	U	YES		63.4		63.4	7.4	63.4	1.8	2.0	Medium Strong
BH-01	22.20	23.1	С	22.6	22.70		D	U	YES		63.4		63.4	12.4	63.4	3.1	3.4	Strong
BH-01	28.00	29.5	С	28.4	28.55		D	U	YES		63.4		63.4	7.7	63.4	1.9	2.1	Strong
BH-02	2.60	4.2	С	3.7	3.80		D	U	YES		63.4		63.4	0.6	63.4	0.2	0.2	Weak
BH-02	7.20	8.6	С	7.7	7.80		D	U	YES		63.4		63.4	2.2	63.4	0.5	0.6	Weak
BH-02	11.60	13.2	С	11.6	11.70		D	U	YES		63.4		63.4	1.1	63.4	0.3	0.3	Weak
BH-02	17.60	19.2	С	18.55	18.65		А	U			63.4		63.4	0.4	71.5	0.1	0.1	Very Weak
BH-02	22.10	23.7	С	23.1	23.25		D	U			63.4		63.4	1.9	63.4	0.5	0.5	Weak
Test Type D - Diametral, A - Axial, I - Irregular Lump, B - Block Direction L - parallel to planes of weakness P - perpendicular to planes of weakness U - unknown or random Dimensions Dps - Distance between platens (platen separation) Dps' - at failure (see ISRM note 6) Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P																		
									Appro	ved B	, , ,	Table sheet	1					

IDL	IRIS	DRILLING		UN	IIAXIAL CC	MPR	ESS	ION	TEST (ON RC	OCK - S	UMM	ARY	OF I	RESULTS
Project No.	CE10		Projec	t Nam	е				Sceirde F	Rocks Lan	dfall				
		Sar	mple			Specimen Dimensions2			Bulk	Water		xial Com	pressio	n3	
Hole No.	Ref	Тор	Base	Туре	Specimen Depth (m)	Dia.	Length	H/D	Density2	Content 1	Condition	Stress Rate MPa/s	Mode of failure	UCS MPa	Remarks
BH-01		9.60	10.10	С	10.3-10.5	mm 63.4	mm 165.7	2.6	Mg/m3 2.68	%	as received	0.0106	S	0.0	Extremely Weak - Fractured at minimum loading
BH-01		22.20	23.10	С	23.9-24.05	63.4	167.4	2.6	2.70		as received	0.2854	AC	52.5	Strong
BH-02		11.60	13.20	С	12.7-12.9	63.4	165.9	2.6	2.71		as received	0.1001	S + AC	21.8	Weak
BH-02		17.60	19.20	С	18.65-18.92	63.4	167.6	2.6	2.71		as received	0.1121	S	20.4	Weak
Notes															

above notes apply unless annotated otherwise in the remarks

Test Specification
International Society for Rock Mechanics, The complete ISRM suggested methods for Rock Characterization Testing and Monitoring, 2007

Date Printed

Approved By
13/02/2023

1 sheet
1

Mode of failure :

S - Single shear

AC - Axial cleavage F - Fragmented

MS - multiple shear

1 ISRM p87 test 1, water content at 105 \pm 3 oC, specimen as tested for UCS

2 ISRM p86 clause (vii), Caliper method used for determination of bulk volume and derivation of bulk density

3 ISRM p153 part 1, determination of Uniaxial Compressive Strength (UCS) of Rock Materials

Irish I L	Drill .td.	ing	Summary of Thermal Conductivity test results									
Project No			Project	t Nam	e							
2022	2CE10	6					Scei	rde Rocks L	andfall.			
			Sa	ample		Date of	Bulk	Thermal	Thermal			
Hole No.	Ref	Тор	Base	Туре	Description	test	density Mg/m3	Dry density Mg/m3	Water Content %	Conductivity W/m.K	Resistivity m.K/W	Remarks
TP-01	1	0.50	0.90	В	Grey slightly sandy SILT.	12/01/2023	1.85	1.39	33.5	1.67	0.60	
TP-01	1	0.50	0.90	В		24/01/2023	1.94	1.60	21.3	2.03	0.49	
TP-01	1	0.50	0.90	В		31/01/2023	1.91	1.62	18.2	1.72	0.58	
TP-01	1	0.50	0.90	В		03/02/2023	1.85	1.59	16.4	1.26	0.79	
TP-01	1	0.50	0.90	В		03/02/2023	1.85	1.62	14.4	1.26	0.80	
TP-01	4	0.50	0.90	U100	Grey slightly sandy SILT.	12/01/2023			28.6	0.73	1.37	
TP-01	4	0.50	0.90	U100	Grey slightly sandy SILT.	12/01/2023				1.71	0.59	
TP-02	4	0.30	0.75	U100	Grey slightly sandy SILT.	24/01/2023			23.1	0.92	1.09	
TP-02	4	0.30	0.75	U100	Grey slightly sandy SILT.	24/01/2023				1.63	0.62	
TP-02	1	0.50	0.90	В	Grey slightly sandy SILT.	19/01/2023				1.72	0.58	
TP-02	5	1.30	1.70	В	Grey-orange slightly sandy slightly gravelly SILT.	03/02/2023	2.29	2.06	11.0	1.82	0.55	
TP-02	5	1.30	1.70	В		07/01/2023	2.14	1.99	7.8	0.99	1.01	
TP-02	5	1.30	1.70	В		09/02/2023	2.22	2.02	10.0	1.48	0.68	
TP-02	5	1.30	1.70	В		09/02/2023	2.25	2.02	11.3	1.53	0.65	
TP-02	5	1.30	1.70	В		09/02/2023	2.28	2.03	12.1	1.71	0.59	
								.	, 1.			
Notes Tests perform	ned in ac	cordance	with in ho	ouse me	thod based on ASTM D	5334 using a di	rect reading	Date Printe		oved By	Table	1
system in acc	ordance	with the I	Manufactu	ırer's ins				13/02/20)23	CIS	sheet	1
-	_				ms for non-steady state		technique.		'			•

GFOLABS Limited **Bucknalls Lane** Garston Watford Hertfordshire **WD25 9XX**

Tel: +44(0) 1923 892 190 Fax: +44(0) 1923 892 191 email: admin@geolabs.co.uk web: www.geolabs.co.uk

27 January 2023

Report No: GEO/37267/01

Page 1 of 1

Date samples received 18/01/2023

Date written instructions received 11/01/2023

Date testing commenced

19/01/2023

Date of sample disposal 24/02/2023

SCEIRDE ROCKS LANDFALL

GEO / 37267 2022CE106

Ms D Darcy

Irish Drilling Limited Old Galway Road

For the attention of

Loughrea

Eire

Our ref

Project

Your Ref

Co.Galway

Further to your instructions we have pleasure in enclosing the results of the tests you requested in the attached figures.

LABORATORY TEST REPORT

Item No	Test Quantity	Description
1 2	3 4	Cerchar Abrasivity Thermal Conductivity and Resistivity

Any opinions or interpretations expressed herein are outside the scope of UKAS accreditation. All results contained in this report are provisional unless signed by an approved signatory. The results contained in this report relate only to samples received in the laboratory and are tested 'as received' unless otherwise stated. This report should not be reproduced, except in full, without the written approval of the laboratory. The results reported are applicable only to the test items received by the laboratory.

All the necessary data required by the documented test procedures has been recorded and will be stored for a period of not less than 6 years. This data will be issued to yourselves at your request. All samples will be disposed of after the date shown above. Written confirmation will be required to retain the samples beyond this period and a storage charge may be applied.

We trust that the above meets your requirements and should you require any further information or assistance, please do not hesitate to contact us.

Yours faithfully

on behalf of GEOLABS Limited

C Clergeaud **Head of Department**

CERCHAR ABRASIVITY

		ole details						Cerchar Abr	asivity				Cerchar Abrasivity								
Borehole Ref.	Sample Ref.	Depth (m)	Description	D. Tested	(9/.)	Max Grain Size (mm)	Direction of Stylus	Specimen Condition as tested	As measured readings d (0.01 mm)	Standard Deviation of CAI	CAI Mean pin wear (mm)	Surface condition (correction)	CAI mean index	Abrasivity Classification							
BH-01	1	12.00-12.10	Very strong thinly laminated dark grey SILTSTONE. Fresh to slightly weathered	25/01/23	As received	0.10	No weakness	As received	18,15,14,13,12	0.23	0.14	Rough Sample No correction needed	1.4	Low							
BH-01	2	24.70-24.80	Very strong thinly laminated dark grey SILTSTONE. Fresh to slightly weathered	25/01/23	As received	0.10	No weakness	As received	10,15,14,13,13	0.19	0.13	Saw-cut Sample: (1.14 * CAI)	1.5	Low							
BH-02	1	12.00-12.10	Very strong thinly laminated dark grey SILTSTONE. Fresh to slightly weathered	25/01/23	As received	0.10	No weakness	As received	16,17,15,13,14	0.16	0.15	Rough Sample No correction needed	1.5	Low							
Notes: Stylus R	otes: Stylus Rockwell Hardness and tip shape: 55 ± 1 conical. CERCHAR Apparatus: Type 2 (West). Measurement method: Side and/or Top view under microscope > 50x magnification																				

Checked and Approved by

Project Number:

27/01/2023

Project Name:

C Clergeaud (Snr. Geologist)

Date:

SCEIRDE ROCKS LANDFALL

GEO / 37267

2022CE106

GEOLABS

ISRM Suggested Methods - Rock Characterization Testing and Monitoring 2007 - 2014

CERCHAR ABRASIVITY

Borehole Ref.:

BH-01

Sample Ref.:

Depth (m): 12.00-12.10 Description:

Very strong thinly laminated dark grey SILTSTONE. Fresh to slightly

weathered

Sample details

Maximum grain size (mm) 0.1

Condition as tested

As received

Planes of weakness

Lamination

Cerchar apparatus Type 2 (West):

Equipment used

In this apparatus the sample moves under a stationary stylus

with a specific speed.

Stylus: Made of steel with a Rockwell Hardness of HRC 55±1.

Direction of stylus No weakness

Surface condition (correction) Rough Sample (no correction needed)

Test No.		1	2	3	4	5
Measurement d ₁	mm	0.17	0.15	0.12	0.13	0.12
Measurement d ₂	mm	0.19	0.14	0.15	0.14	0.13
Measurement d ₃	mm	0.19	0.15	0.15	0.13	0.12
Measurement d ₄	mm	0.17	0.16	0.14	0.12	0.12
Measurement d ₅	mm	0.19	0.14	0.13	0.13	0.12
Mean reading d _M	mm	0.18	0.15	0.14	0.13	0.12
Mean pin wear	mm					0.14
CERCHAR-Abrasiv	vity-Index	(CAI)				1.44
Standard deviation	of CAI					0.23
Classification of CA	AI .				Low	abrasiveness

Classification	of CAI
0.1-0.4	Extremely low
0.5-0.9	Very low
1.0-1.9	Low
2.0-2.9	Medium
3.0-3.9	High
4.0-4.9	Very high
≥5	Extremely high

Date tested: 25 January 2023

*Measurements done under >50x magnification calibrated microscope. Using top and side view

Photograph

Not required

Checked and Approved by

C Clergeaud (Snr. Geologist)

27/01/2023 Date:

Project Number:

Project Name:

GEO / 37267

SCEIRDE ROCKS LANDFALL 2022CE106

ISRM Suggested Methods - Rock Characterization Testing and Monitoring 2007 - 2014

CERCHAR ABRASIVITY

Borehole Ref.:

BH-01

Sample Ref.:

Depth (m): 24.70-24.80

Description:

Very strong thinly laminated dark grey SILTSTONE. Fresh to slightly

weathered

Sample details

Maximum grain size (mm) 0.1

Condition as tested As received

Planes of weakness Lamination

Direction of stylus No weakness

Surface condition (correction) Saw-cut Sample:(1.14 * CAI)

Equipment used

Cerchar apparatus Type 2 (West):

In this apparatus the sample moves under a stationary stylus

with a specific speed.

Stylus: Made of steel with a Rockwell Hardness of HRC 55±1.

Test No.		1	2	3	4	5
Measurement d ₁	mm	0.10	0.13	0.14	0.13	0.13
Measurement d ₂	mm	0.11	0.16	0.15	0.14	0.14
Measurement d ₃	mm	0.10	0.16	0.14	0.13	0.13
Measurement d ₄	mm	0.09	0.15	0.13	0.13	0.13
Measurement d ₅	mm	0.11	0.14	0.14	0.13	0.13
Mean reading d _M	mm	0.10	0.15	0.14	0.13	0.13
Mean pin wear	mm					0.13
CERCHAR-Abrasiv	vity-Index	(CAI)				1.48
Standard deviation	of CAI			0.19		
Classification of CA	AI .				Low	abrasiveness

Classification of CAI							
0.1-0.4	Extremely low						
0.5-0.9	Very low						
1.0-1.9	Low						
2.0-2.9	Medium						
3.0-3.9	High						
4.0-4.9	Very high						
≥5	Extremely high						

Date tested: 25 January 2023

Photograph

Not required

Checked and Approved by

CC

C Clergeaud (Snr. Geologist)

Date: 27/01/2023

Project Number:

Project Name:

GEO / 37267

SCEIRDE ROCKS LANDFALL 2022CE106

^{*}Measurements done under >50x magnification calibrated microscope. Using top and side view

ISRM Suggested Methods - Rock Characterization Testing and Monitoring 2007 - 2014

CERCHAR ABRASIVITY

Borehole Ref.:

BH-02

Sample Ref.:

Depth (m): 12.00-12.10

Description:

Very strong thinly laminated dark grey SILTSTONE. Fresh to slightly

weathered

Sample details

Maximum grain size (mm) 0.1

Condition as tested

As received

Planes of weakness
Direction of stylus

Lamination

No weakness

Surface condition (correction)

Cerchar appara

Cerchar apparatus Type 2 (West):

In this apparatus the sample moves under a stationary stylus

with a specific speed.

Equipment used

Stylus: Made of steel with a Rockwell Hardness of HRC 55±1.

Rough Sample (no correction needed)

Test No.		1	2	3	4	5
Measurement d ₁	mm	0.14	0.17	0.15	0.13	0.14
Measurement d ₂	mm	0.17	0.16	0.16	0.13	0.15
Measurement d ₃	mm	0.17	0.17	0.15	0.14	0.14
Measurement d ₄	mm	0.16	0.18	0.14	0.12	0.14
Measurement d ₅	mm	0.15	0.16	0.15	0.13	0.14
Mean reading d _M	mm	0.16	0.17	0.15	0.13	0.14
Mean pin wear	mm					0.15
CERCHAR-Abrasiv	vity-Index	(CAI)				1.50
Standard deviation	of CAI					0.16
Classification of CA	Al				Low	abrasiveness

0.1-0.4	Extremely low
0.5-0.9	Very low
1.0-1.9	Low
2.0-2.9	Medium
3.0-3.9	High
4.0-4.9	Very high
≥5	Extremely high

Date tested: 25 January 2023

Classification of CAI

*Measurements done under >50x magnification calibrated microscope. Using top and side view

Photograph

Not required

Checked and Approved by

CC

C Clergeaud (Snr. Geologist)

Date: 27/01/2023

Project Number:

Project Name:

GEO / 37267

SCEIRDE ROCKS LANDFALL 2022CE106

C - 37267-470165.XLSM 1902 - THPR BH-01 08.20

THERMAL CONDUCTIVITY OF SOIL AND SOFT ROCK BY THERMAL NEEDLE PROBE

BH-01 Location Sample Depth (m) 8.20 Sample Type С

Description:

Very strong thinly laminated dark grey SILTSTONE. Fresh to slightly weathered

> 25/01/2023 Date tested:

Equipment and Methodology details

Decagon Devices KD2 Pro Thermal Conductivity meter with RK-1 Needle Probe. The KD2 Pro complies fully with ASTM D5334-08. Data is recorded every second over a 60 second period to an internal microprocessor and an alogrithm used to calculate the best fit of the steady state data and the thermal conductivity derived. This obviates the need for a graphical plot of temperature against time.

Sample details

Sample diameter 64.10 mm **Bulk Density** 2.40 Mg/m³ 113.60 mm Dry Density 2.38 Mg/m³ Sample length Sample mass 880.70 g Moisture Content 0.8 %

Test Temperature 20.52 °C

Sample Preparation

Sample is Undisturbed. The probe has been inserted by pushing into a predrilled hole. Thermal paste used to provide better thermal contact

0.99 **Calibration factor**

> **Thermal Conductivity** 2.52 W/(m·k)

> 0.40 (m·k)/W **Thermal Resistivity**

Remarks

Probe inserted at 30° angle relative to lamination

Processed by

MB

Checked and Approved by:

C Clergeaud - Head of Department 27/01/2023

Project Number:

GEO / 37267

Project Name:

SCEIRDE ROCKS LANDFALL 2022CE106

GEOLABS

Version 02.230125-1902

1902 - THPR BH-01 25.70 C - 37267-470164.XLSM

THERMAL CONDUCTIVITY OF SOIL AND SOFT ROCK BY THERMAL NEEDLE PROBE

Location BH-01 Sample Depth (m) 25.70 Sample Type C Description:

Very strong thinly laminated dark grey SILTSTONE. Fresh to slightly weathered

Date tested: 25/01/2023

Equipment and Methodology details

Decagon Devices KD2 Pro Thermal Conductivity meter with RK-1 Needle Probe. The KD2 Pro complies fully with ASTM D5334-08. Data is recorded every second over a 60 second period to an internal microprocessor and an alogrithm used to calculate the best fit of the steady state data and the thermal conductivity derived. This obviates the need for a graphical plot of temperature against time.

Sample details

Sample diameter	63.90 mm	Bulk Density	2.70 Mg/m ³
Sample length	102.10 mm	Dry Density	2.69 Mg/m ³
Sample mass	886.90 g	Moisture Content	0.5 %

Test Temperature 20.37 °C

Sample Preparation

Sample is Undisturbed. The probe has been inserted by pushing into a predrilled hole. Thermal paste used to provide better thermal contact

Calibration factor 0.99

Thermal Conductivity 1.85 W/(m-k)

Thermal Resistivity 0.54 (m·k)/W

Remarks

Probe inserted at 30° angle relative to lamination

Processed by **KJ**Checked and Approved by:

27/01/2023

C Clergeaud - He

Project Number:

GEO / 37267

Project Name:

SCEIRDE ROCKS LANDFALL 2022CE106

GEOLABS

GL Version 02.230125-1902

1902 - THPR BH-02 09.70 C - 37267-470163.XLSM

THERMAL CONDUCTIVITY OF SOIL AND SOFT ROCK BY THERMAL NEEDLE PROBE

Location BH-02 Sample Depth (m) 9.70 Sample Type C Description:

Very strong thinly laminated dark grey SILTSTONE. Fresh to slightly weathered

Date tested: 25/01/2023

Equipment and Methodology details

Decagon Devices KD2 Pro Thermal Conductivity meter with RK-1 Needle Probe. The KD2 Pro complies fully with ASTM D5334-08. Data is recorded every second over a 60 second period to an internal microprocessor and an alogrithm used to calculate the best fit of the steady state data and the thermal conductivity derived. This obviates the need for a graphical plot of temperature against time.

Sample details

Sample diameter63.20 mmBulk Density2.68 Mg/m³Sample length108.00 mmDry Density2.67 Mg/m³Sample mass910.80 gMoisture Content0.4 %

Test Temperature 18.57 °C

Sample Preparation

Sample is Undisturbed. The probe has been inserted by pushing into a predrilled hole. Thermal paste used to provide better thermal contact

Calibration factor 0.99

Thermal Conductivity 3.57 W/(m·k)

Thermal Resistivity 0.28 (m·k)/W

Remarks

Probe inserted at 45° angle relative to lamination

Processed by **KJ**Checked and Approved by:

Project Number:

GEO / 37267

C Clergeaud - Head of Department

27/01/2023

Project Name:

SCEIRDE ROCKS LANDFALL 2022CE106

GEOLABS

GL Version 02.230125-1902

1902 - THPR BH-02 15.10 C - 37267-470162.XLSM

THERMAL CONDUCTIVITY OF SOIL AND SOFT ROCK BY THERMAL NEEDLE PROBE

Location BH-02 Sample Depth (m) 15.10 Sample Type C Description:

Very strong thinly laminated dark grey SILTSTONE. Fresh to slightly weathered

Date tested: 25/01/2023

Equipment and Methodology details

Decagon Devices KD2 Pro Thermal Conductivity meter with RK-1 Needle Probe. The KD2 Pro complies fully with ASTM D5334-08. Data is recorded every second over a 60 second period to an internal microprocessor and an alogrithm used to calculate the best fit of the steady state data and the thermal conductivity derived. This obviates the need for a graphical plot of temperature against time.

Sample details

Sample diameter63.20 mmBulk Density2.71 Mg/m³Sample length118.20 mmDry Density2.70 Mg/m³Sample mass1002.50 gMoisture Content0.6 %

Test Temperature 18.56 °C

Sample Preparation

Sample is Undisturbed. The probe has been inserted by pushing into a predrilled hole. Thermal paste used to provide better thermal contact

Calibration factor 0.99

Thermal Conductivity 2.86 W/(m·k)

Thermal Resistivity 0.35 (m·k)/W

Remarks

Probe inserted at 45° angle relative to lamination

Processed by **K**Checked and Approved by:

KJ Project Number:

GEO / 37267

Project Name:

SCEIRDE ROCKS LANDFALL 2022CE106

C Clergeaud Head of Department 27/01/2023

GEOLABS

Irish Drilling Limited Old Galway Road Loughrea Co. Galway

Attention: Dympna Darcy

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528777

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CERTIFICATE OF ANALYSIS

Date of report Generation:20 January 2023Customer:Irish Drilling Limited

Sample Delivery Group (SDG):230112-87Your Reference:2022CE106

Location: Sceirde Rocks Landfall

 Report No:
 675712

 Order Number:
 12034

We received 3 samples on Thursday January 12, 2023 and 3 of these samples were scheduled for analysis which was completed on Friday January 20, 2023. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan

Operations Manager

129

CERTIFICATE OF ANALYSIS

Validated

 SDG:
 230112-87
 Report Number:
 675712
 Superseded Report:

 Client Ref.:
 2022CE106
 Location:
 Sceirde Rocks Landfall

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
27398440	TP-01	D2	0.50 - 0.90	24/11/2022
27398446	TP-01	D7	1.30 - 1.70	24/11/2022
27398444	TP-02	D2	0.50 - 0.90	24/11/2022

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

Superseded Report:

CERTIFICATE OF ANALYSIS

ALS

SDG: 230112-87 **Client Ref**.: 2022CE106

Report Number: 675712

Location: Sceirde Rocks Landfall

Results Legend					
X Test N No Determination	Lab Sample N	No(s)	27398440	27398446	27398444
Possible Sample Types -	Custome Sample Refer	=	TP-01	TP-01	TP-02
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	nce	D2	D7	D2
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)	0.50 - 0.90	1.30 - 1.70	0.50 - 0.90
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)
	Sample Ty	pe	ဟ	တ	ဟ
pH	All	NDPs: 0 Tests: 1			Х
Sample description	All	NDPs: 0			^
Sample accompliant	Tests:		х	Х	Х
Total Organic Carbon	All	NDPs: 0	^		~
		Tests: 3	X	X	X

CERTIFICATE OF ANALYSIS

 SDG:
 230112-87
 Report Number:
 675712
 Superseded Report:

 Client Ref.:
 2022CE106
 Location:
 Sceirde Rocks Landfall

Sample Descriptions

Grain Sizes

very fine	<0.063mm	fine	0.063mm - 0.1mm	medium	0.1mm	ı - 2mm	coars	e 2mm - 10	0mm	very coar	se
Lab Sample N	lo(s) Custo	mer Sample Re	ef. Depth (m)	Col	our	Descrip	tion	Inclusions	Inclu	sions 2	
27398440		TP-01	0.50 - 0.90	Dark	Brown	Silty Clay	Loam	Stones	N	one	
27398446		TP-01	1.30 - 1.70	Light	Brown	Silty Clay	Loam	Stones	N	one	
27398444		TP-02	0.50 - 0.90	Light	Brown	Silty Clay	Loam	None	N	one	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Superseded Report:

CERTIFICATE OF ANALYSIS

ALS

SDG: 230112-87 **Client Ref**.: 2022CE106

Report Number: 675712

Location: Sceirde Rocks Landfall

Results Legend		Cus	tomer Sample Ref.	TP-01	TP-01	TP-02		
# ISO17025 accredited. M mCERTS accredited.		out	nomer oumpie itei.	IP-01	17-01	TP-02		
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.			Depth (m)	0.50 - 0.90	1.30 - 1.70	0.50 - 0.90		
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report for			Sample Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)		
accreditation status. ** % recovery of the surrogate standard to check the			Date Sampled Sample Time	24/11/2022	24/11/2022	24/11/2022		
efficiency of the method. The results of individual compounds within samples aren't corrected for the	,		Date Received	12/01/2023	12/01/2023	12/01/2023		
recovery			SDG Ref Lab Sample No.(s)	230112-87 27398440	230112-87 27398446	230112-87 27398444		
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)	1.00/		AGS Reference	D2	D7	D2		
Component Moisture Content Ratio (% of as received sample)	LOD/U		Method PM024	20	13	19		
Soil Organic Matter (SOM)	<0.3	5 %	TM132	0.881	0.498	0.476		
pH	1 pH l	Jnits	TM133	@#	@#	@# 6.36		
	. ,					@ M		

Validated

CERTIFICATE OF ANALYSIS

 SDG:
 230112-87
 Report Number:
 675712
 Superseded Report:

 Client Ref.:
 2022CE106
 Location:
 Sceirde Rocks Landfall

Table of Results - Appendix

Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
TM132	In - house Method	ELTRA CS800 Operators Guide
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden (Method codes TM).

Validated

CERTIFICATE OF ANALYSIS

ALS

SDG: 230112-87 **Client Ref**.: 2022CE106

Report Number: 675712

Location: Sceirde Rocks Landfall

Superseded Report:

Test Completion Dates

Lab Sample No(s)	27398440	27398446	27398444
Customer Sample Ref.	TP-01	TP-01	TP-02
AGS Ref.	D2	D7	D2
Depth	0.50 - 0.90	1.30 - 1.70	0.50 - 0.90
Туре	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
рН			13-Jan-2023
Sample description	12-Jan-2023	12-Jan-2023	12-Jan-2023
Total Organic Carbon	20-Jan-2023	20-Jan-2023	20-Jan-2023

CERTIFICATE OF ANALYSIS

SDG: 230112-87 Report Number: 675712 Superseded Report: Client Ref: 2022CE106 Location: Sceirde Rocks Landfall

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and sylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "nixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
ş	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name		
Chrysof le	White Asbesbs		
Amosite	Brow n Asbestos		
Cro a dolite	Blue Asbe stos		
Fibrous Act nolite	-		
Fib to us Anthop hyll ite	-		
Fibrous Tremolite	-		

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of $<3 \mu m$ diameter, longer than 5 μm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 06 Trial Pit Photographs

Irish Drilling Ltd: Trial Pit Photos:

Figure 1 H:\22CE106_Corio Doonbeg\Tp1...jpg

Figure 2 H:\22CE106_Corio Doonbeg\Tp1...jpg

Figure 3 H:\22CE106_Corio Doonbeg\Tp2...jpg

Figure 4 H:\22CE106_Corio Doonbeg\Tp2...jpg

Appendix 07 Rotary Core Photographs

Appendix 08 Site Plan

Ground Investigation Layout

Legend

Borehole Locations

Trial Pit Locations

GAVIN & DOHERTY

GAVIN & DOHERTY

T: +353 1 207 1000

Geodetic Parameters:

Datum: IRENET95 Projection: Transverse Mercator Ellipsoid: GRS 1980 Prime meridian: Greenwich Unit: metre EPSG: 2157

Map Number: 22308-GDG-GI-Layout-01-01

Revision	Date	Remarks	Drawn	Checked	Approved
0	28/10/2022	First issue	CE	SC	
1	10/10/2022	First issue	SC	SC	

PSG:	Plot Size	Datum	Projection	
157	A3	IRENET95	Transverse Mercator	

Appendix 09 Data Logger